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ABSTRACT
RFID tracking a�racts a lot of research e�orts in recent

years. Most of the existing approaches, however, adopt an
orientation-oblivious model. When tracking a target whose
orientation changes, those approaches su�er from serious
accuracy degradation. In order to achieve target tracking
with pervasive applicability in various scenarios, we in this
paper propose OmniTrack, an orientation-aware RFID track-
ing approach. Our study discovers the linear relationship
between the tag orientation and the phase change of the
backsca�ered signals. Based on this �nding, we propose
an orientation-aware phase model to explicitly quantify the
respective impact of the read-tag distance and the tag’s orien-
tation. OmniTrack addresses practical challenges in tracking
the location and orientation of a mobile tag. Our experimen-
tal results demonstrate that OmniTrack achieves centimeter-
level location accuracy and has signi�cant advantages in
tracking targets with varing orientations, compared to the
state-of-the-art approaches.
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1 INTRODUCTION
Location is indispensable information in modern indus-

try. Target tracking, namely, to continuously determine
the location of a mobile target, has great signi�cance and
therefore a�racts a lot of research e�orts in the area of in-
dustrial cyber-physical systems (CPS) [2, 15, 21, 24]. Radio
Frequency IDenti�cation (RFID) has been widely applied
in industrial scenarios [3, 11]. Due to its low cost, ease of
deployment, and high e�ciency in terms of information

IPSN’18, Porto, Portugal
2018. . . .$15.00
DOI:

Figure 1: Industrial production lines.

gathering, RFID is deemed as a promising solution for target
tracking [13, 17, 25].

Early works on RFID-based localization and tracking rely
on the received signal strength (RSS) to calculate the distance
between a reader and a tag or construct a RSS map for �nger-
printing. Since RSS is susceptible to environmental dynamics
and external signals, the accuracy of those approaches is lim-
ited. Recently, researchers propose to exploit signal phase
information for RFID tracking. Compared to RSS, the phase
change between the transmi�ed and the backsca�ered sig-
nals is more reliable as an indicator of the reader-tag distance.
BackPos in [8] localizes a tag according to the �nding that
the di�erence of the phases received by two antennas of a
reader corresponds to the di�erence of the distances from the
tag to the two antennas. Assuming that the phase change is
solely determined by the reader-tag distance, Tagoram [25]
and MobiTagbot [13] exploit the holography to estimate the
probability that a tag is located at a certain location.

�e phase change, however, is jointly determined by both
the reader-tag distance and the tag’s orientation. Most of the
existing approaches adopt an orientation-oblivious model
that neglects the non-trivial impact of orientation on the
phase change. �e tracking accuracy will degrade when the
tag’s orientation changes while moving. A few works address
the problem of orientation change [20], but they cannot be ap-
plied to the scenarios where the location and the orientation
simultaneously change. �ere are many such scenarios in
industrial applications, as shown in Fig. 1. For example on a
medicine bo�ling line and a soda production line, the bo�les
move along the lines with continuous self-rotation. Other
production lines make operations to the moving targets, such
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as labeling or spray painting, which not only require the in-
formation of orientation, but also change the orientation of
the targets. Directly using an orientation-oblivious model
will be error-prone, not to mention the inability to calculate
the orientation. In such scenarios, orientation-aware track-
ing has practical signi�cance, but remains an open problem.

To tackle the above problem, we may meet the following
challenges. First, though we know that the backsca�ered sig-
nals from a RFID tag is anisotropic, the relationship between
the phase and the orientation is still unclear. Blurring the im-
pact of orientation on the signal phase inevitably introduces
errors in tracking a tag. Second, the tag’s orientation and the
reader-tag distance jointly a�ect the phase of the received
signal at the reader. A group of phase measurements o�en
correspond to a number of possible location-orientation com-
binations. Without an e�ective solution to cope with such
ambiguity, the tracking process cannot converge to a unique
result.

In this paper, we propose OmniTrack, an orientation-
aware tracking approach that applies to commercial o�-the-
shelf (COTS) RFID systems.

• By exploiting the phenomenon of tag polarization,
we conduct real-world observation and discover the
linear relationship between the phase change of the
signal and the tag’s orientation. Based on this �nd-
ing, we propose an orientation-aware model to ex-
plicitly quantify the respective impact of the reader-
tag distance and the tag orientation on the phase
change.
• We propose a light-weight and accurate tracking ap-

proach called OmniTrack. To the best of our knowl-
edge, OmniTrack is the �rst approach that can pin-
point tag’s location and orientation simultaneously.
OmniTrack also deals with practical challenges in
initializing, updating, and calibrating the location
and orientation of a mobile tag.
• We implement OmniTrack on a COTS RFID plat-

form. �e experimental results demonstrate that
OmniTrack achieves centimeter-level location ac-
curacy and has signi�cant advantages in tracking
targets with varing orientations, compared to the
state-of-the-art approaches.

�e remainder of the paper is structured as follows. We
discuss the related works in Section 2. Section 3 shows
the limitation of the existing phase model and presents the
orientation-aware phase model. In Section 4 we elaborate
on the design of OmniTrack. Section 5 discusses important
issues concerning the applicability and the extensibility of
OmniTrack in practice. Section 6 presents the implementa-
tion details and the evaluation results. Section 7 concludes
the paper.

2 RELATEDWORKS
�is section reviews the state of the arts in RFID local-

ization, tracking, and rotation detection. At the end of this
section, we brie�y discuss how our work di�ers from the
existing works.

RFID Localization and Tracking: Early proposals on
RFID localization and tracking generally exploit RSS for lo-
cation inference. Depending on the speci�c technique, the
existing works can be classi�ed into two categories: RSS-
based ranging [1, 6] and �ngerprinting [10]. Since RSS is
susceptible to environmental dynamics and external signals,
ranging based on those environment-dependent propagation
models are generally inaccurate. �e accuracy of �ngerprint-
based approaches, however, is constrained by the granularity
of site survey or the density of deployed tags.

In recent years the research focus moves onto phase-based
localization and tracking. �e phase change between the
transmi�ed and the backsca�ered signals can be an approx-
imate indicator of the reader-tag distance. Liu et al. [8]
directly uses such a phase model to estimate the distance
di�erences from the tag to multiple antennas. And then a
hyperbolic positioning method is exploited to localize a tag.
In [5, 27], multi-frequency approaches are used to obtain
more accurate ranging data for localization.

Phase change introduced by a backsca�ering tag is a non-
negligible factor in phase-based localization and tracking
[26]. Under this circumstances, the holographic approaches
are proposed and achieve so far the best accuracy. Miesen et
al. [9] introduce a holographic scheme to localize a tag with
phase values sampled from a synthetic aperture on the RFID
reader. Parr et al. [12] exploit tag mobility and adopt Inverse
Synthetic Apertures Radar (ISAR) to generate holograms
for tag localization and tracking. Tagoram [25] proposes
Di�erential Augmented Hologram (DAH) to track the tag
accurately. MobiTagbot in [13] improves the holographic
approach with channel hopping to suppress the multi-path
e�ect. Angle of Arrival (AoA) is another metric proposed for
localization and tracking [7, 19, 23], which can be derived
from the phase di�erence at di�erent antennas,

RFID Rotation Detection: �ere are works based on
RFID system for orientation or rotation detection. RF-compass
[18] uses a 2D-plane partitioning method to navigate a ro-
bot to gradually converge to the object’s orientation, but it
cannot directly track the object’s orientation. �e works in
in [4, 16] deploy dense RFID tags to cover the site of inter-
est and then detect position and orientation of the target
with a reader installed on it. �ey need complex and burden-
some preparation before tracking, which limits the practical
applicability. PolarDraw [14] leverages electromagnetic po-
larization to identify tag movement, by utilizing information
like phase change and RSS. Tagyro [20] proposes a 3D ro-
tation detection system that exploits the phase di�erence.
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Figure 3: Tag’s Rotation
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Figure 4: �e impact of tag’s orienta-
tion

It requires two sets of tags a�ached to the target and two
readers for rotation detection. �ey realize 3D rotation de-
tection, however, under the assumption that the position of
the target is �xed.

As we exemplify before, tracking targets with the varing
orientation is a frequent task in practical production lines.
Neglecting the impact of the varing orientation will cause
the loss of tracking accuracy. Most of the existing works
overlook this problem or tolerate the orientation-induced
errors by employing certain probabilistic methods [9, 12,
25]. As for the orientation tracking approaches, most of
them consider the orientation change while assuming a �xed
location. Our work for the �rst time explicitly addresses the
above problem and innovates RFID tracking with orientation-
awareness. OmniTrack can simultaneously pinpoint the
location and the orientation. Compared to the existing works,
OmniTrack has signi�cant advantages in tracking targets
with varing orientations.

3 ON THE ORIENTATION-AWARENESS
OF THE PHASE MODEL

�is section �rst introduces the model adopted by the
existing approaches and discusses its limitation. �en we
introduce the concept of tag polarization and present the
observations on the relationship between tag orientation and
the phase change during backsca�er communication. Based
on the observations, we propose the orientation-aware phase
model.

3.1 Limitations of the
Orientation-oblivious Model

Fig. 2 shows a typical signal propagation process between
a reader and a tag. �e phase change is de�ned as the mod-
ulo di�erence between the phases of transmi�ed signal and
received signal at the reader. We use ϕ to denote the phase
change. �e general phase model adopted by the existing
work is shown below:

ϕ = (
2π
λ
× 2d + δ ) mod 2π

δ = ϕTx + ϕRx + ϕTaд
(1)

where d is the reader-tag distance. ϕTx , ϕRx , and ϕTaд are
the phase changes introduced by the reader’s transmi�er, the
tag, and the reader’s receiver circuit. λ is the wave length of
the signal. ϕTx andϕRx are the constants that are only related
to the hardware circuits. In this model, ϕTaд is commonly
treated as a constant or the random noise. However, we �nd
it violates our empirical results. We rotate the tag for one
cycle while �xing its distance to the antenna and the phase
change can achieve up to 2π as shown in Fig. 4.

�erefore, the localization or tracking methods based on
this phase model can be inaccurate when there exists tag’s
rotation.

3.2 Observations
�e phenomenon Section 3.1 discusses is actually caused

by the antenna polarization. �e polarization of an antenna
refers to the change of the signal’s electric �eld produced by
the antenna. Generally, the antenna of a COTS passive tag is
linear-polarized,, which means the direction of the electric
�eld (polarized direction) is the same as the direction of the
tag’s body (Y axis in Fig. 3). When the tag rotates as shown
in Fig. 3, the tag’s polarized direction will change relatively
to the received RF waves, thus leading to the changes in the
measured phase.

We observe from the Fig. 4 that the measured phase lin-
early changes with the angle of rotation under some certain
conditions. So if we can ensure the linear relation during the
process of tracking, It is possible to �nd a way to remove the
in�uence of the polarization and detect the tag orientation.
As shown in Fig. 3, We de�ne the X axis is the line perpen-
dicular to the antenna plane and the X-Y plane is parallel to
the ground. Z axis is perpendicular to the X-Y plane.

Observation: �e measured phase will change linearly
with the angle between the polarized direction of the tag and
the antenna-to-tag direction.

If the angle between the tag’s rotation plane and the
reader’s antennas is �xed, we will always obtain the above-
mentioned relation. As shown in Fig. 3, if the tag rotates by
Z axis, we always have a linear relation no ma�er the tag’s
surface is pointed to the X axis or the Z axis. According to
this observation, in industrial production lines, we may just
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Figure 5: �e Overview of OmniTrack

a�ach a tag at the top of or the side of a target. �en we will
see the linear phase change when the target rotates in the
2D space. Fig. 4 shows the phase changes we measure in
such a scenario. �e results reveal that the phase will change
for 2π if we rotate the tag for 360◦.

3.3 �e Orientation-aware Phase Model
According to our observations, we propose an orientation-

aware phase model that takes both the distance and the
orientation into consideration. �e phase change ϕ received
by the reader is de�ned below:

ϕ = (
2π
λ
× 2d + k × θ + c) mod 2π

c = ϕTx + ϕRx + ϕTaд
(2)

In this phase model, we take into account the angle θ
between the tag polarized direction and the tag-to-antenna
direction. �rough the empirical studies conducted in Sec-
tion 3.2, we concluded that the phase changes linearly with
the angle θ and the changing rate k is 2 or −2 according
to the rotation direction and the circular polarized antenna.
ϕTx , ϕRx and ϕTaд are all constants here. �ey are the phase
changes caused by the transmi�er circuits, the receiver cir-
cuits and tag’s hardware. Here, we use the constant term c
to denote the sum of their impact on the phase change.

In typical 2D scenarios, we can exploit the model to track
the orientation change of the target at a �xed position if we
a�ach a tag at the surface of the target. We can derive the
orientation change based on this model when we obtain the
phase change, However, tracking a target with both rotation
and movement is not an easy task. �erefore, we propose
our tracking system to realize the tracking of targets with
varing orientations, which provides us with both location
and orientation.

4 DESIGN
�e design of OmniTrack must meet the following goals:

(1) Both the location and the orientation must be accurately
calculated and keep updated throughout the tracking process.
(2) Initialization of a tag’s location and orientation must be
accurate and e�cient, in order to ensure the overall tracking
accuracy and e�ciency. (3) Errors cumulated during the
tracking process are inevitable, but must be well controlled
and calibrated in time.

OmniTrack consists of three main components. As shown
in Fig. 5, the core of OmniTrack is an orientation-aware Up-
dating Component that iteratively updates the tag’s location
and orientation according to the consecutive measurements
of phases at the reader antennas. �e Initialization Compo-
nent provides the initial location and orientation of the tag
by using techniques like channel hopping and phase pa�ern
matching. �e Calibration Component deals with the error
accumulation while tracking.

4.1 Orientation-aware Tracking
With OmniTrack, we have an RFID reader with two anten-

nas, which provide consecutive phase readings of the target
tag for the updating module. Tracking with OmniTrack is
a continuous process, in which the tag’s location and orien-
tation is periodically updated according to the consecutive
phase readings. �e updating frequency depends on the
sampling rate of the reader, typical at 30-50Hz. For ease of
illustration, we present the algorithm as the antennas are
located at the same plane of tag rotation. In practice, Om-
niTrack works as long as the perpendicular distance from
the antennas to the tag rotation plane is known. �e mov-
ing distance of a tag can be calculated using our algorithm,
according to the geometric relation.

�e detailed updating process runs as follows. As illus-
trated in Fig. 6, suppose we have phase readings from anten-
nas A1 and A2 at time ti and ti+1. We denote the correspond-
ing phase readings by ϕp,q , where p is the antenna index and
q is the time index. �e expressions of the phases at time ti
and ti+1 are shown below according to Eq. (2):

ϕp,i = (
2π
λ
× 2dp,i + k × θp,i + cp ) mod 2π

ϕp,i+1 = (
2π
λ
× 2dp,i+1 + k × θp,i+1 + cp ) mod 2π

(3)

dp,q denotes the distance between the antenna p (p = 1, 2)
and the tag at time tq . θp,q denotes the relative angle be-
tween the the tag’s polarized direction and the antenna-tag
direction. cp is the constant phase o�set depending on the
respective antenna and the tag.

Suppose the tag’s location and orientation at ti (namely
d1,i , d2,i , θ1,i , θ2,i ) are known, the task of the tracking compo-
nent is to calculate d1,i+1, d2,i+1, θ1,i+1, and θ2,i+1. Note that



Orientation-aware RFID Tracking with Centimeter-level Accuracy IPSN’18, April 11–13 2018, Porto, Portugal

A1

A2

ti ti+1 ti+2 ti+3

✓1,i

✓1,i+1

✓2,i+1
✓2,i

d1,i

d1,i+1

d2,i+1

d2,i

2m

Figure 6: Tag’s Movement

PiPi

Pi+1Pi+1

A2A22m2m

↵1,i↵1,i ↵2,i↵2,i

�!v

A1A1

Figure 7: Tracking the tag

�✓

A1 A22m

d1 d2

d2 � d1 = 2a

Figure 8: Initial position estima-
tion

there are only two constraints in Eq. (3) corresponding to
the two antennas. Solving Eq. (3) does not yield a unique so-
lution. We need to exploit additional geometric relationship
to determine the tag’s location and orientation.

Now we look into the movement of a tag in a time slot.
Suppose we rotate a tag for ∆θ at a �xed position, the angle
between the tag’s polarized direction and the antenna-tag
direction also rotates for the same ∆θ . Note that the phase
readings are samples for tens of times every second, we
may assume that the movement of a tag in one time slot
doesn’t a�ect the angle between the tag’s polarized direction
and the antenna-tag direction. �e change of the angle, if
detected, is solely caused by the tag self-rotation. Since the
tag’s rotation causes simultaneous change of angle at both
antennas, we have θ1,i+1 −θ1,i = θ2,i+1 −θ2,i . By respectively
subtracting the two formulas at two antennas, we get the
following equations.

∆ϕp,i = (
2π
λ
× 2∆dp,i + k × ∆θp,i ) mod 2π

∆ϕp,i = ϕp,i+1 − ϕp,i ,∆dp,i = dp,i+1 − dp,i

∆θp,i = θp,i+1 − θp,i

(4)

According to the above inference, ∆θ1,i = ∆θ2,i . By further
subtracting ∆ϕ1,i and ∆ϕ2,i in Eq. (4), we can eliminate the
impact of rotation angles and get

∆ϕi = ∆ϕ2,i − ∆ϕ1,i = (
2π
λ
× 2∆di ) mod 2π

∆di = (d1,i+1 − d2,i+1) − (d1,i − d2,i )
(5)

Recall that we know the previous position and orientation
of the tag, the distance di�erence (d1,i − d2,i ) is known. Ac-
cording to Eq. (5), we can obtain the distance di�erence at
time ti+1, namely (d1,i+1 − d2,i+1), as long as ∆ϕi is uniquely
determined. Fig. 6 illustrates the geometric relationship dur-
ing tracking. According to the triangle inequality theorem,
we have

|d1,i − d2,i | < 2m, |d1,i+1 − d2,i+1 | < 2m (6)

2m is the distance between the two antennas. �us if we
make the distance between the two antennas within the

half-wavelength λ
2 (about 15cm), then we have

|d1,i − d2,i | <
λ

2 , |d1,i+1 − d2,i+1 | <
λ

2 . (7)

�at means the − λ2 < ∆d <
λ
2 , which constrains the range

of the phase between −2π and 2π according to Eq. (5). In
this way, we can get a unique value of ∆ϕi and in turn obtain
the value of (d1,i+1 − d2,i+1). Actually, the constraints for
the distance between antennas can be relaxed based on the
feasible region proposed in BackPos [8]. Since the location
and the orientation are calculated in an iterative way. �e
distance between antennas has no e�ect on the accuracy of
the tracking.

So far we know the position of the antennas and the dif-
ference of the distances from the tag to the antennas, the
tag is located in a hyperbola with the two antennas as the
focues. As shown in Fig. 7, we denote the current location of
the tag by Pi . �e tag’s movement direction consists of two
projected directions: #      »

A1Pi and #      »
A2Pi . As illustrated before,

the sampling interval of the reader is very short so that we
can assume the tag’s moving direction doesn’t change during
a sampling interval. �e moving distances ∆d1,i , ∆d2,i from
time ti to time ti+1 at the two projected directions can be
calculated according to Eq. (4):


∆d1,i = (

λ

4π (∆ϕ1,i − k × ∆θi )

∆d2,i = (
λ

4π (∆ϕ2,i − k × ∆θi )

(8)

�erefore, we can calculate the new position of the tag Pi+1
by:

Pi+1 = Pi + ∆d1,i
#      »
A1Pi + ∆d2,i

#      »
A2Pi (9)

�e new location of the tag is the intersection of the line
PiPi+1 and the hyperbola described before. We de�ne the
line connecting two antennas as the X axis and the vertical
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bisector of the two antennas as the Y axis. �en we have:

x2

a2 −
y2

b2 = 1

m2 − a2 = b2(b > 0)
xi + ∆d1,i cosα1,i + ∆d2,i cosα2,i = x

yi + ∆d1,i sinα1,i + ∆d2,i sinα2,i = y

(10)

α1,i and α2,i are denoted in Fig. 7. Solving the above equation
yields the tag’s rotation angle ∆θi and new coordinates (x ,y).
�rough the above updating process, OmniTrack keeps track-
ing the location and the orientation of a moving tag.

4.2 Initialization
OmniTrack tracks the target in an iterative way according

to the consecutively received phases, the previous location,
and the previous orientation of the target. We should design a
light-weight component to calculate both the initial location
and orientation of the target. �e initialization component
mainly uses the techniques of channel hopping and RSS
pa�ern matching.

4.2.1 Channel Hopping. According to our orientation-
aware phase model provided in Eq.(2), the random hardware
phase o�set denoted by c can make the distance derivation
unreliable. However, we observe that our orientation-aware
phase model in Eq.(2) can also be expressed as follow:

ϕ = (
2π f
v
× 2d + k × θ + c) mod 2π (11)

f is the frequency of the carrier wave and v is the speed of
the electromagnetic wave.

�e phase changes linearly with the frequency. If we mea-
sure multiple phase readings with channel hopping, the e�ect
of the angle θ and hardware c can be eliminated through
the subtraction among the phase readings with di�erent
frequencies.

In COTS RFID system, the gaps of adjacent hopping chan-
nels are equal, we still can’t solve out a unique distance
through phase di�erences. In OmniTrack, we make the an-
tennas to hop the channels with the same frequency gap ∆ f ,
then we can obtain the phase change ∆ϕi corresponding to
the frequency change ∆ f at the antenna i . �e ∆ϕi can be
expressed as:

∆ϕi = (
4π
v
× di × ∆ f ) mod 2π (12)

di is the distance between the tag and the antenna i . �ere
still exists phase ambiguity. However, with at least two
antennas, we can obtain the distance di�erence between the
tag and two antennas i and j:

∆ϕ = ∆ϕi − ∆ϕ j = (
4π
v
× (di − dj ) × ∆ f ) mod 2π (13)

We observe that di − dj is unique if |di − dj | < v
2∆f , which

constrains the range of ∆ϕ between −2π and 2π . As shown
in Fig. 8, we can locate the tag in a hyperbola de�ned by the
two antennas and the distance di�erence. When there are
more antennas, we can draw multiple hyperbolas for each
two antennas and locate the tag at their intersecting point.

4.2.2 Pa�ern Matching. �e phase and RSS received by
the reader can present unique pa�ern when we rotate the
tag by one cycle (360◦) at a �xed position. As shown in
Fig. 9, the phase changes linearly with the relative rotation
angle, which satis�es our phase model in Eq.(2). �e relation
between the RSS and the rotating angle satis�es the sinusoid
function. When the tag rotates to point at the reader (the
θ = π

2 or
3π
2 in Eq.(2)), the RSS reaches its lowest value. It is

caused by the mismatch between the polarized directions of
the antenna and the tag. �us we can know the tag’s current
direction if the current RSS reaches its lowest value.

In OmniTrack, with two antennas A1 and A2 as shown
in Fig. 8, we rotate the tag anticlockwise. �e RSS received
by A1 will �rst capture a lowest value at time t0, then we
mark a corresponding time t1 at antenna A2. A�er that,
antenna A2 will capture a lowest value at time t2. We know
that during the time period (t1, t2), the tag rotates for ∆θ . In
order to calculate ∆θ , we retrieve the phase values ϕ1 and
ϕ2 corresponding to t1 and t2 at antenna A2. So according to
the model in Eq.(2), the ∆θ is |k(ϕ2 − ϕ1)|. In another case,
if the tag rotates clockwise, the ∆θ is 2π − |k(ϕ2 − ϕ1)|: k is
the �xed phase changing rate in Eq.(2).

We already know the hyperbola and the intersecting angle
∆θ in Fig. 8, then we can solve out both the location and
orientation of the tag if we de�ne the line connecting two
antennas as the X axis and the vertical bisector of the two
antennas as the Y axis. �e set of equations is expressed
below:


x2

a2 −
y2

b2 = 1

m2 − a2 = b2(b > 0)
d2

1 + d
2
2 − 2d1d2 cosθ = 4m2

(14)

Since the phase value corresponding to the lowest RSS is
recorded when we rotate the tag, any orientation of the tag
relative to the antenna can be calculated from the phase
di�erence according to Eq.(2).

We could �nd the initialization of the system is reduced to
solve an equation set, which incurs negligible computational
cost into the system. As for the channel hopping time and
the rotation time, in industrial system, there are preparation
zones for each production lines, so these operations could be
�nished at these places not to incur extra costs to the system.



Orientation-aware RFID Tracking with Centimeter-level Accuracy IPSN’18, April 11–13 2018, Porto, Portugal

0 60 120 180 240 300 360
Angle (°)

0

2

4

6

Ph
as

e 
(ra

di
an

)

(a) Phase changing with rotation

0 100 200 300
Angle (°)

-50

-48

-46

-44

-42

-40

R
SS

 (d
Bm

)
(b) RSS changing with rotation

Figure 9: Measured phase and RSS of a tag rotating for
360◦

4.3 Calibration
�e iterative calculation in tracking is likely to accumulate

errors. �erefore, we design a calibration component to
eliminate the accumulated error.

We �rst conduct the experiments to �nd the characteristics
of the received signal when the tag is moving and rotating.
We slide a tag back and forth in a distance of 20cm and draw
the RSS change in Fig. 10 (a). Also, we rotate the tag to
measure the RSS value and present the result in Fig. 10 (b).

From Fig. 10, we �nd: (1) �e RSS change caused by tag’s
rotation is far more than that caused location displacement.
In other word, if the tag’s rotation is the main movement
when tracking, we could ignore the e�ect of the tag’s dis-
placement on the RSS. (2) �e RSS change caused by the tag’s
rotation satis�es the sinusoid relation and the RSS value is
related to the rotating angle.

In most scenarios, the rotation of the target is common
and frequent. So in OmniTrack, we try to �rst capture those
intervals that the target’s rotation is dominant and it has
almost no movement, then we can search for a proper initial
orientation so that all RSS changes in these intervals can
�t the sinusoid function well. �ere are two steps to �nish
the task: (1) �nding the calibration intervals; (2) designing
suitable algorithm to calibrate the orientation.

Calibration Interval: �e calibration in OmniTrack is pas-
sively triggered in a calibration interval. Speci�cally, the
calibration interval is speci�ed according to the observa-
tion above: the tag’s rotation is the main movement. In
the implementation, we de�ne two variables to detect the
calibration interval: the total rotating angle θ and the total
moving distance d during the interval. �e interval is de-
tected if θ > θt and d < dt , where θt and dt are prede�ned
parameters (dt=10 cm, θt=30◦ in our implementation).

Calibration Algorithm: In the calibration interval, we can
obtain a series of rotation angles as {∆θi } based on our track-
ing module and our goal is to calibrate the orientation at the
beginning of the interval. According to our second observa-
tion, we can model these RSS changes as:

rss = P | sin(θ + ∆θ )| + Pof f set (15)
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Figure 10: RSS changing pattern

where P is the maximum RSS range and Pof f set is the strength
o�set. We denote the series of RSS di�erences corresponding
to the rotation angles as {∆rssi } and the initial orientation
angle we want to calibrate as θo .

Our goal is to search for an initial orientation angle that
can make the theoretical RSS series suits {∆rssi } best. �e
theoretical ∆rssi has the expression below:

∆rssi = P(|sin(θ + ∆θi+1)| − |sin(θ + ∆θi )|) (16)

�e RSS range P depends on many factors like the tag’s
distance to the antenna and the transmi�ing power of the
reader, it is hard to accurate acquire the parameter. Instead,
we turn to the metric ∆r ssi+1

∆r ssi
, which can eliminate the pa-

rameter P . We enumerate the angle θ in the range from 0 to
2π with the accuracy of 1◦ and set the angle that minimizes
the

∑
(
∆r ssi+1
∆r ssi

)
2 as the calibrated angle at the beginning of

the interval. One thing we should notice is that theoretically
we could obtain two angles that both minimize the metric
because of the periodicity of the RSS change model. �e
di�erence between the two angles is just π . �us if the an-
gle calculated is not close to the angle θo , we will use the
corresponding angle that close to θo .

�e location could be calibrate with the calibrated orienta-
tions at di�erent antennas using the method in initialization
module.

5 DISCUSSION
Multi-path e�ect: �e Multi-path e�ect interferes with

signal propagation, which is a common problem for phase-
based localization and tracking. �e multi-path propagation
may also entangle the phase calculation in OmniTrack, as
the phase change induced by the tag orientation becomes
complicated. By examing the real industrial application sce-
narios, we �nd that multi-path e�ect can be avoided as much
as possible, by deploying the reader antennas at appropriate
positions. For example, for tracking medicine bo�les on a bio-
pharmaceutical production line (Fig. 1), one can deploy the
antennas su�ciently close to the line to ensure the quality of
line-of-sight signals [22]. Even when the multi-path signals
really interfere with phase calculation, we can take e�ective
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countermeasures, e.g. channel hopping in MobiTagbot [13],
to mitigate the negative impact.

Scalability: Note that the communication range of a RFID
reader is typically several meters. How to extend the deploy-
ment of OmniTrack and make it seamlessly cover a large
area (e.g. a long pipeline) becomes a meaningful issue. For
reliable and seamless tracking, one can deploy multiple pairs
of antennas in di�erent subareas. Adjacent pairs of anten-
nas should have their interrogated areas intersected with
each other. Moreover, all the antennas are connected and
synchronized at the back-end. Knowing the real-time loca-
tion of a tag, the reader is able to determine when and to
which antenna a handover of tracking responsibility should
be made.

Generalizability: In many modern industrial production
lines, the whole line is separated into di�erent function zones
and at the joints of these zones, there are special areas for
the products to adjust its states, like orientation. Taking the
automobile production line for example, the body of a car
needs to pass several function zones like cu�ing and spray-
painting. Before entering the next function zone, there is a
speci�c area to adjust the car’s posture and orientation so
that the manipulators can accurately make operations on it.
When OmniTrack is applied to such a scenario, the joints of
the function zones can be used to initialize and calibrate the
system. �e orientation and location provided by OmniTrack
are also very important information for these function zones.
OmniTrack can work with only two antennas, which can
save the costs of deployments.

6 EVALUATION
�is section presents the implementation details and eval-

uation results. We implement OmniTrack on COTS devices.
�en we compare it with two state-of-the-arts approaches
with di�erent experimental se�ings.

Implementation: In the implementation and experi-
ments, we use an ImpinJ Speedway R420 RFID reader, two
Laird circular polarized antennas, and Alien UHF passive
RFID tags. �e whole system operates at the 920-926 MHz
band, with frequency hopping enabled.

�e tags and the reader adopt LLRP protocol for commu-
nication. �e ImpinJ reader extends this protocol to support
the phase readings. We con�gure the reader to immediately
report the phase reading, whenever a tag is detected. �e
so�ware is implemented using C#. In the lab experiments,
we run the so�ware at a MSI desktop PC, which has Intel
Core i7 6700 CPU at 2.6 GHz and 8G memory.

Methodology: We a�ach a tag onto an automatic rotat-
ing plate, then we mount the plate on the top of a toy train.
Fig. 11 shows the experiment setups and the rails of the
train. �ere are two types of experiments: tracking without
rotation and tracking with rotation. For tracking without
rotation, we disable the rotation of the plate when the train
drives along the rails. �e orientation still changes, but only
due to the movement of the train. For tracking with rotation,
we select several spots on the rails, where the plate is man-
ually rotated to to emulate the operations that changes the
target�s orientation.

We evaluate the performance of tracking in terms of the
localization error and the orientation error. �e ground-truth
location of the target is calculated according to the moving
speed of the train and the geometric property of the rails.
�e ground-truth orientation is acquired based on the angle
marks on the surface of the plate.

We compare OmniTrack with state-of-the-art approaches:
Tagoram [25] and BackPos [8]. Tagoram assumes the prior
knowledge of the rails so as to emulate virtual antenna arrays.
OmniTrack and BackPos requires no prior knowledge. We
implement the three approaches with the same hardwares.

6.1 Tracking without Rotation
We �rst evaluate the performance in the rails shown in Fig.

11 and there is no manual rotation during the tracking. �e
movement speed of the train is set at the same magnitude as
the existing works like Tagoram.
Linear Rail: In this experiment, the train drives on the

linear rail as shown in Fig. 11 (a). We set the train’s driving
speed at three levels (0.127m/s, 0.203m/s, and 0.286m/s). At
each speed, we repeat the experiment 25 times and calcu-
late the average location error of OmniTrack, Tagoram, and
BackPos. We plot the CDF of location errors in Fig. 12.

When the train’s speed v = 0.127m/s, the average loca-
tion errors of Tagoram, OmniTrack and BackPos are 2.4cm,
3.4cm, and 8.3cm, respectively. When the moving speed
v = 0.203m/s, the average location errors of Tagoram, Om-
niTrack, and BackPos are 3.9cm, 5.1cm, and 11.7cm, respec-
tively. When the moving speed v = 0.286m/s, the average
errors increase to 4.9cm, 7.2cm, and 13.1cm correspondingly.
As the speed increases, all the three approaches su�er ac-
curacy degradation because the higher speed decreases the
phase samplings within a �xed distance. Tagoram has the
best performance, owning to the prior knowledge of the
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Figure 12: Location error on the linear rail
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Figure 13: Location error on the circular rail

Straight 
Track

S-shape 
Track

Figure 14: Tracking rotating targets on two di�erent
rails

movement trajectory. �e accuracy of OmniTrack is close
to that of Tagoram, without the requirement of prior knowl-
edge. BackPos is apparently less accurate, due to the impact
of orientation change.
Circular Rail: We then carry out experiments when the

train drives on a circular rail as in Fig. 11 (b). In this ex-
periment, we let the train run for a round and calculate the
average location error. Similar with the previous experiment,
the train’s speed is set at three levels. For each speed, the
experiments are repeated for 25 times. We compare Om-
niTrack with Tagoram and BackPos and plot the CDF of
location errors in Fig. 13.

It shows that the average location errors of OmniTrack
are 6.1cm, 7.1cm, and 8.5cm when the moving speeds are
0.127m/s , 0.203m/s , and 0.286m/s , respectively. �e tag’s
orientation keeps changing due to the circular rail, even
though we don’t manually rotate it. �e orientation change
a�ect the location errors of the three approaches. It is worth
noticing that the accuracy gap between OmniTrack and Tago-
ram is reduced because of the orientation-aware model used
in OmniTrack. However, Tagoram still achieves the best ac-
curacy, owing to the prior knowledge of the movement. So in

the next experiments, we evaluate the performance in more
complex scenarios, which emulate the practical industrial
applications scenarios.

6.2 Tracking with Rotation
In this section, we evaluate the three approaches when

tracking the targets with rotation. �e two rails are shown
in Fig. 14. Other than the orientation changes at the curves
of the rails, we set several rotation spots where the plate on
the train rotates for 60◦.
Straight Track: We plot the CDF of location errors in Fig.

15. �e train’s speed is set at three levels, namely 0.104m/s,
0.186m/s, and 0.232m/s.

We can see that OmniTrack apparently outperforms Tago-
ram and BackPos in this group of experiments. When the
train’s speed is 0.104m/s , the average location errors of Om-
niTrack, Tagoram, and BackPos are 4.3cm, 7.7cm, and 13.3cm,
respectively. In term of location error, OmniTrack outper-
forms Tagoram and BackPos by 1.8× and 3.1×, respectively.
�e reason behind is that OmniTrack quanti�es the impact of
tag orientation on phase readings and eliminate that negative
impact by using the orientation-aware model.

Comparing the results of Fig. 12 and Fig. 15, OmniTrack
has consistently stable location accuracy, no ma�er the tag
rotates or not. In comparison, the accuracy of Tagoram
and BackPos apparently degrades when the tag rotation is
introduced.

To further understand the advantage of OmniTrack, we
present the error changes of the three approaches on the
straight rail. �e results are shown in Fig. 19. We can clearly
observe that at every rotation spot, the location errors of
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Figure 15: Location error on the straight rail
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Figure 16: Location error on the S-shape rail

Tagoram and BackPos signi�cantly increase while Omni-
Track keeps the error at a low level. �e reason is OmniTrack
explicitly deals with the problem of orientation change.

S-shape Track: Next we evaluate the tracking performance
when the train drives on a more complex rail. �is time we
adopt a S-shape rail with six rotation spots, as shown in Fig.
14. �e total length of the track is 232 cm. �e plate a�ached
with tag rotates for 60◦ at every rotation spot. �e train’s
speed is set at three levels, namely 0.102m/s , 0.174m/s , and
0.223m/s .

We plot the CDF of location errors in Fig. 16. We can �nd
that the S-shape rail with more turns and rotations exacer-
bates the problem with the orientation-obliviousness model
in BackPos and Tagoram. �e average location errors of
Tagoram and BackPos are 9.7cm and 14.3cm, respectively,
when the train’s speed v = 0.102m/s . In comparison, Om-
niTrack has an average location error of only 5.7cm, out-
performing Tagoram and BackPos by 1.7× and 2.5×, respec-
tively.

6.3 Accuracy of Orientation
OmniTrack can simultaneously calculate a tag’s orienta-

tion, which cannot be done by either Tagoram or BackPos.
We record the orientation errors during the experiments

of tracking targets without rotation in Section 6.1. Fig. 17
presents the means and variations of orientation errors. �e
average orientation error on the linear rail is 3.2◦, 4.6◦, and
5.5◦, when the train’s speed v is 0.127m/s , 0.203m/s , and
0.286m/s , respectively. On the circular rail, the average ori-
entation error is 10.3◦, 12.8◦, and 15.6◦, respectively under
the corresponding speed. �e orientation error on the circu-
lar rail is higher than that on a linear rail, because orientation

change is more frequent and continuous on the circular rail.
Besides, the a�enuation of backsca�ered signals may be
larger when the train drives on the semicircle farther to the
antennas. �en the RSS and phase readings appear to be
more noisy, potentially inducing higher errors.

We record the orientation errors during the experiments
of tracking targets with rotation in Section 6.2. Fig. 18 shows
the means and variations of orientation errors. �e average
orientation errors on the straight rail are 5.7◦, 6.6◦, and
8.5◦, when the moving speeds are 0.102m/s , 0.174m/s , and
0.223m/s , respectively. On the S-shape rail, the average
orientation errors are 8.3◦, 10.6◦, and 13.4◦, respectively
under the corresponding speed. �e orientation error on the
S-shape rail is higher than that on the straight rail, because
orientation change is more frequent on the S-shape rail.

6.4 Accuracy of Initialization
In this section, we evaluate the accuracy of the initializa-

tion in OmniTrack. In order to evaluate the accuracy of the
initialization, we select 12 positions on the circular rail to
separately initialize OmniTrack. �e selected positions are
shown in Fig. 11. We conduct initialization at each position
for 10 times. �e results of the location error are shown in
Fig. 20. �e average location error is 1.7cm. For positions
No. 4 and No. 8, the location errors are higher than the
average. �e two positions are far from the antennas, so the
achievable sampling rates of phase and RSS are relatively
lower due to the weak signals.

�e results of the orientation error are shown in Fig. 21.
�e average orientation error is below 7◦ at the 12 positions.
�e orientation errors at position No. 4 and No. 8 are still
higher than others because of the lower sampling rates.
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6.5 Accuracy of the Calibration
Recall that the calibration contains two components: lo-

cation calibration and orientation calibration. �e location
calibration part is similar to the initialization phase, whose
performance is already evaluated in Section 6.4. Next we
focus on evaluating the orientation calibration. �e rotation
spots on the rails naturally become the opportunities for
orientation calibration. We plot the orientation error before
and a�er calibration at each spot in Fig. 22.

From the results, we can �nd the calibration on the straight
rail can reduce the orientation error by 1.4◦, 2.7◦, 3.2◦ and
3.5◦ at the four rotation spots, respectively. Due to errors
accumulation , the orientation error is increasing during the
movement. �e orientation error on the S-shape rail has a
similar trend with that on the straight rail. �e calibration
reduces the orientation error by 2.4◦, 1.8◦, 2.1◦, 2.6◦, 3.5◦,
and 2.6◦ at the six rotation spots, respectively.

To examine the performance of orientation calibration
in more details, we carry out a separate experiment. We
a�ach the tag at the center of the rotation plate and �x the
location of the plate. We rotate the plate from 0◦ to 360◦ at
a constant speed of 6◦/s . We calculate the orientation error
with and without calibration during the rotation process.
�e results are shown in Fig. 23. �e length of the radius
is the scale of orientation error. We can �nd that without
calibration, the error is accumulated and can be as large as
12◦. In comparison, our calibration algorithm can limit the
accumulated error and keep the orientation error below 6◦.
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Figure 21: Accuracy of the Orientation at di�erent po-
sitions

7 CONCLUSION
Accurate tracking of targets is a signi�cant problem in

industrial CPS. In this work, we look into the signal propa-
gation process between a RFID reader and a tag. For the �rst
time in the community, we discover and quantify the impact
of tag orientation on phase change. Based on this �nding,
we propose OmniTrack, an orientation-aware RFID tracking
approach that is applicable to COTS RFID systems. Unlike
the existing phase-based proposals, OmniTrack employs an
orientation-aware phase model for target tracking and e�-
ciently deals with various orientation-dependent problems.
�e evaluation results demonstrate that OmniTrack achieves
centimeter-level location accuracy and has signi�cant advan-
tages in tracking targets with varing orientations, compared
to the state-of-the-art approaches.
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